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Abstract We consider a class of convex risk-neutral PDE-constrained opti-
mization problems subject to pointwise control and state constraints. Due to
the many challenges associated with almost sure constraints on pointwise eval-
uations of the state, we suggest a relaxation via a smooth functional bound
with similar properties to well-known probability constraints. First, we intro-
duce and analyze the relaxed problem, discuss its asymptotic properties, and
derive formulae for the gradient the adjoint calculus. We then build on the the-
oretical results by extending a recently published online convex optimization
algorithm (OSA) to the infinite-dimensional setting. Similar to the regret-
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based analysis of time-varying stochastic optimization problems, we enhance
the method further by allowing for periodic restarts at pre-defined epochs. Not
only does this allow for larger step sizes, it also proves to be an essential factor
in obtaining high-quality solutions in practice. The behavior of the algorithm
is demonstrated in a numerical example involving a linear advection-diffusion
equation with random inputs. In order to judge the quality of the solution,
the results are compared to those arising from a sample average approximation
(SAA). This is done first by comparing the resulting cumulative distributions
of the objectives at the optimal solution as a function of step numbers and
epoch lengths. In addition, we conduct statistical tests to further analyze the
behavior of the online algorithm and the quality of its solutions. For a suffi-
ciently large number of steps, the solutions from OSA and SAA lead to random
integrands for the objective and penalty functions that appear to be drawn
from similar distributions.

Keywords Optimization under Uncertainty · PDE-Constrained Optimiza-
tion · State Constraints · Probability Constraints · Expectation Constraints ·
First-Order Methods · Stochastic Approximation

Mathematics Subject Classification (2010) 49M20, 49M41, 65K05,
65K10, 90C15, 90C25

1 Introduction

In this paper, we propose a comprehensive relaxation-based approach for the
numerical solution of a risk-neutral PDE-constrained optimization problem
subject to control and pointwise state constraints. For our algorithm devel-
opent, we assume that the objective function has the general form

j(z) ≜ EP[J(z, ξ)], (1.1)

where J(z, ξ) is convex in the control variables z almost surely (a.s.) and ξ
denotes the random inputs. In the context of PDE-constrained optimization,
we will assume that the solution operator z 7→ uξ(z) of the PDE (as an implicit
function of the controls z) is included in the definition of J(z, ξ) so that

J(z, ξ) ≜ Ĵ(uξ(z), z, ξ).

One common example of this is the standard tracking-type function

Ĵ(uξ(z), z, ξ) ≜
1

2
∥uξ(z)− ud∥2U +

α

2
∥z∥2Z (1.2)

in which ud is a deterministic target state, ∥·∥U and ∥·∥Z are appropriate
Hilbert space norms, and α > 0.
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In many applications, the state variable uξ(z) is restricted by certain point-
wise bounds, which may be in the form of a static obstacle, a minimum temper-
ature, or a maximum allowable concentration. Consequently, we consider the
situation where the PDE solution uξ(z) must satisfy the pointwise constraint

uξ(z) ≥ ψ a.e./a.s., (1.3)

where ψ is a prescribed function.
Minimizing the convex objective function (1.1) while enforcing the state

constraint (1.3) represents significant challenges. In particular, any algorith-
mic approach necessarily relies on a tractable formulation of the uncertain
constraints. One of the main contributions of this paper is the derivation of
such a tractable formulation that follows a convex relaxation approach. To
illustrate our approach, consider the relaxation of the a.s. constraints into
probability constraints. Here, we only require the bound to hold with high
probability. In doing so, we fix a pre-specified confidence level p ∈ (0, 1) and
require that

P (uξ(z) ≥ ψ a.e.) ≥ p. (1.4)

Joint chance constraints of this form are popular in many engineering problems
such as hydro reservoir control and mechanics [2, 8]. However, optimization
problems with probability constraints are difficult already in finite-dimensions,
where there exist many structural results related to differentiability and con-
vexity [10, 16, 26]. See [30] or [32, Chap. 4] for additional details. In this work,
we make further progress on this relevant question. Our basic ideas can be
described as follows:

1. Replace the almost sure state constraint (1.3) by a degenerate global ex-
pectation constraint of the type

Φ(z) = 0, (1.5)

for some suitably defined expectation functional Φ(z). This relaxation ap-
proach is inspired in part by the notion of “integrated chance constraints,”
defined in [5, 6, 15].

2. Relax this constraint by introducing a small slack ε > 0, and impose the
weaker restriction

Φ(z) ≤ ε. (1.6)

This relaxation strategy allows us to cast the PDE-constrained optimization
problem as a stochastic optimization problem with expectation constraints of
the form

min
z∈Zad

j(z) subject to Φ(z) ≤ ε, (1.7)

where Zad is the set of admissible controls. This reformulation allows for global
violations of the state constraint similar to the chance constraint (1.4), but
with the decisive advantage of guaranteed convexity and smoothness, inde-
pendent of the nature of the contaminating noise. This offers an alternative
to probability constraints that is numerically tractable and exhibits similar
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properties (see Section 3). The price we pay for this regularity is that both
the objective function, as well as the constraints appear in terms of an expec-
tation. Hence, to solve such an optimization problem numerically, we need to
resort to sampling and simulation-based techniques. Accordingly, we develop
a new online stochastic approximation (OSA) algorithm for the relaxed for-
mulation (1.7), which is designed to solve an infinite-dimensional stochastic
optimization problem with expectations appearing in the objective function
and the constraints.

Recently, the PDE-constrained optimization community has devoted a sig-
nificant amount of interest in developing numerical schemes for control prob-
lems with randomly perturbed coefficients. Many approaches employ an em-
pirical approximation for the random integrands using either Monte-Carlo [22],
Quasi-Monte Carlo [14], Multilevel Monte Carlo [35] or adaptive sparse grids
[19, 20] to obtain a deterministic PDE-constrained problem. The deterministic
solvers employed in these (and related) papers are typically inexact Newton ap-
proaches, which allow for massive parallelization for the gradient and Hessian-
vector products and avoid expensive matrix computations. Recently, stochastic
approximation methods in the spirit of [29] have been adapted to stochastic
PDE-constrained optimization problems in [12, 13] and [28]. Variance reduc-
tion ideas, originating from machine learning, have witnessed applications in
this field [27] as well.

From the broader perspective of stochastic optimization, not many nu-
merical schemes for solving convex stochastic optimization problems subject
to expectation constraints are known. The only existing alternative to the
scheme developed here is essentially the recent work by [23]. Here, the authors
adapt the proximal gradient method to functional constrained optimization
problems, where the constraint needs to be sampled at the current position
of the algorithm. Their scheme is very flexible, and extends to the Bregman
setup easily. Additionally, given a desired solution accuracy ϵsol > 0, they
state an O(ϵ−2

sol ) iteration complexity result in terms of the ergodic average.
This gives an upper bound on the number of iterations needed to arrive at a
solution of accuracy ϵsol > 0 on the order of ϵ−2

sol . However, their analysis is
restricted to finite-dimensional optimization problems. In addition, it seems
that their analysis relies on an a priori decomposition of the set of iterations,
which appears to be challenging, at least, to verify in practice.

In contrast to the method in [23], we instead follow a machine learning
inspired approach and extend a recent online convex optimization algorithm
with time-varying constraints, due to [37]. We enrich their method to allow for
periodic restarts at pre-defined epochs, similar to the regret-based analysis of
time-varying stochastic optimization problems laid out in [3, 9]. The restart-
based algorithm does not improve the theoretical iteration complexity, but
allows us to use larger, epoch-dependent step sizes, which can be a crucial
factor in practice.

Recently, a conditional gradient framework for stochastically constrained
convex programming problems has been introduced in [36]. We believe that this
approach can be applied to the current situation as well, once the technical
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details associated with the infinite-dimensionality stemming from the PDE-
constraint are resolved. However, the iteration complexity of that scheme is
O(ϵ−6

sol ), which is much slower than the present O(ϵ−2
sol ). At least for PDE-

constrained optimization, it is important to note that each stochastic gradient
(or subgradient) evaluation requires the solution of two partial differential
equations. Therefore, even a rough solution accuracy of ϵsol = 10−3 indicates
that the conditional gradient approach would require approximately 1018 PDE
solves, which is clearly not acceptable from a computational standpoint. In
contrast, the Newton-based solvers mentioned above typically require several
million PDE solves, which is comparable to the 106 PDE solves for an O(ϵ−2

sol )
algorithm.

The rest of this paper is organized as follows. Section 2 introduces the no-
tation used in this paper and describes the PDE model in detail. Section 3
describes the stochastic optimization problem subject to the PDE constraint
and the obstacle. In that section the penalty reformulation is also explained
in detail. Section 4 presents the algorithm we use to solve the relaxed prob-
lem (1.7) numerically. Finally, Section 5 provides a numerical example with
a rigorous statistical analysis comparing the proposed OSA algorithm and a
sample average approximation (SAA) approach.

2 Notation and PDE Description

Throughout, (Ω,F ,P) is a complete probability space and D ⊂ Rn is an open
and bounded set. Given a Banach space U , we denote the associated norm by
∥ · ∥U . If V is another Banach space, then we denote the space of continuous
linear operators mapping U into V by Lin(U, V ). The topological dual space of
V is accordingly V ∗ ≜ Lin(V,R). Given a functional h : V → R, we denote the
Fréchet derivative of h at v ∈ V by h′(v) ∈ V ∗. When V is a Hilbert space, we
denote its inner product by (·, ·)V and assume that the associated norm is given
by ∥f∥2V ≜ (f, f)V . When the context is clear, we will omit the space from
the norm and inner product. If V is a Hilbert space and h : V → R is Fréchet
differentiable, we denote the gradient associated with h′(v) by ∇h(v) ∈ V .
Finally, we denote strong (norm) convergence by ‘→’ and weak convergence
by ‘⇀.’

We consider PDEs with random inputs, the solutions of which are random
fields. Consequently, it is necessary to introduce various function spaces for
the solution variables. We denote the Lebesgue space of (equivalence classes
of) square-integrable functions from D to R by L2(D). We further denote the
Sobolev space of L2(D) functions with L2(D) weak derivatives by H1(D) and
the closed subspace of H1(D) functions with zero boundary trace by H1

0 (D).
We denote the topological dual space of H1

0 (D) by H−1(D). For more on
Lebesgue and Sobolev spaces, see e.g., [1]. The Sobolev H1

0 (D) is a common
solution space for deterministic linear elliptic PDEs. However, since we con-
sider PDEs with random inputs, the solution is a random field, which belongs
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to the Bochner space
U ≜ L2(Ω,F ,P;H1

0 (D))

of F-strongly measurable square P-integrable mappings v : Ω → H1
0 (D), en-

dowed with the natural norm

∥v∥2U ≜ EP

[
∥v∥2H1

0 (D)

]
.

Other Bochner spaces, e.g., L∞(Ω,F ,P;H1(D)), are defined analogously [17].
For v ∈ U , we recall that v(ω) ∈ H1

0 (D) a.s. When needed, we denote the
evaluation of v(ω) at x ∈ D by v(ω, x).

We refer to the optimization variables z ∈ Z ≜ L2(D) as the “controls” and
the PDE solutions u ∈ U as the “states.” Let (Ξ,Σ) be a measurable space.
The measurable mapping ξ : Ω → Ξ is a random element that parametrizes
the PDE coefficients. Without loss of generality, we assume that ξ(Ω) = Ξ.
We distinguish between the random element ξ and its possible values ξ ∈ Ξ
using bold text. Given a control z ∈ Z, the state solves the random PDE: Find
u ∈ U that satisfies

EP

[∫
D

κ(x, ξ)∇xu(·, x) · ∇xv(·, x) dx
]

= EP

[∫
D

((B(ξ)z)(x) + f(x, ξ))v(·, x) dx
]

∀ v ∈ U .
(2.1)

For the development of numerical methods, it is often convenient to con-
sider the equivalent “parametric” weak form of (2.1): For fixed z ∈ Z and
ξ ∈ Ξ, find uξ ∈ H1

0 (D) that satisfies∫
D

κ(x, ξ)∇uξ(x) · ∇ϕ(x) dx

=

∫
D

((B(ξ)z)(x) + f(x, ξ))ϕ(x) dx ∀ϕ ∈ H1
0 (D).

(2.2)

The equivalence to (2.1) in one direction can be seen by choosing test functions
of the type v(ω, x) = χA(ω)φ(x) such that A ∈ F and φ ∈ H1

0 (D) and then
substituting these into (2.1). Since (2.1) holds for all A ∈ F , we obtain (2.2).
The reverse direction from (2.2) to (2.1) is a special case of the nonlinear
elliptic setting considered in [22], where it is shown that measurability follows
from a measurable selection theorem and integrability from standard a priori
estimates for linear elliptic PDE.

We now postulate several basic assumptions on the data for (2.1).

Assumption 1 We assume that

1. f(·, ξ) ∈ L∞(Ω,F ,P;Z);
2. There exist positive constants 0 < κ0 ≤ κ1 < +∞ such that

κ0 ≤ κ(·, ξ) ≤ κ1 a.e. ∀ ξ ∈ Ξ;
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3. The control operator ω 7→ B(ξ(ω)) : Ω → Lin(Z, H−1(D)) is uniformly
measurable, essentially bounded and completely continuous:

zn ⇀ z in Z ⇒ B(ξ)zn → B(ξ)z in H−1(D) a.s.

Under Assumption 1, the Lax-Milgram Lemma applies to show that a
solution to (2.1) exists and is unique. Owing to the linearity of the PDE,
the solution can be written as S(z) + uf , where S(z) is the unique solution
of (2.1) obtained by setting f ≡ 0 and uf is the unique solution of (2.1)
obtained by setting z ≡ 0. Note that S is a bounded linear operator from Z
into U . Using the equivalence between (2.1) and (2.2), we may also use the
ξ-dependent solution operator Sξ : Z → H1

0 (D) such that the solution to (2.2)
is Sξ(z) + uf(·,ξ) for ξ ∈ Ξ.

Remark 1 As shown in [22], a much larger class of semilinear elliptic PDEs can
be analyzed in an optimization context. However, significant difficulty arises
from the state constraint. For this reason, we have chosen to develop the
theory and algorithm in this paper for the linear elliptic case. One of the main
difficulties in the semilinear case is a full convergence proof of the algorithm,
since the nonlinearity renders the optimization problems nonconvex.

3 The Optimization Problem

3.1 The Objective Function, Constraints, and Further Data Assumptions

We consider optimal control problems with the convex objective function (1.1)
and the control constraints

Zad ≜ {v ∈ Z | a ≤ v ≤ b a.e.}. (3.1)

In addition, we impose a unilateral state constraint on the solution operator
z 7→ S(z) of the form:

Sξ(z)[x] ≥ ψ(x, ξ)− uf(·,ξ)(x) for a.a. x ∈ D a.s. (3.2)

In order to prove existence of solutions and analyze the algorithm below, we
require the following mild regularity assumptions.

Assumption 2 We assume that

1. D ⊂ Rn is an open and bounded set with Lipschitz boundary Γ ⊂ Rn−1;
2. a, b ∈ L2(D) with a < b a.e.;
3. ψ : D × Ξ → R is continuous, satisfies ψ(x, ξ) ≤ 0 for all (x, ξ) ∈ Γ × Ξ,

and ψ(·, ξ) ∈ H1(D) for all ξ ∈ Ξ;
4. j(·) is proper, weakly lower-semicontinuous, and convex.
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For readability, we define the state-constrained feasible set by

C ≜
{
z ∈ Z |P

(
Sξ(z)[x] ≥ ψ(x, ξ)− uf(·,ξ)(x) for a.a. x ∈ D

)
= 1

}
. (3.3)

The next assumption ensures that the “original” optimization problem admits
a solution. Moreover, it is necessary for the asymptotic statements of the re-
laxation approach.

Assumption 3 The feasible set is nonempty, i.e., C ∩ Zad ̸= ∅.

We will later discuss a weaker assumption in the context of the relaxed prob-
lems below for cases in which it is unclear whether Assumption 3 holds.

As an operator from Z into U , S is bounded and linear. From this, one read-
ily shows that (under Assumption 3) C∩Zad is a nonempty, closed, bounded,
and convex set in Z and therefore weakly compact. Consequently, the convex
infinite-dimensional stochastic optimization problem

inf
z∈Z

{j(z) | z ∈ C ∩ Zad} (P)

admits a solution z⋆, which is unique if j is strictly convex as in (1.2). Under
further regularity conditions on D, e.g., if D is of type C1,1 or a convex poly-
hedron, it is possible to show that u(z) = S(z) + uf ∈ L∞(Ω,F ,P;H2(D) ∩
H1

0 (D)). This fact was discussed in detail in the recent paper [11]. It provides
sufficient regularity to argue for the existence of a Slater point for the state
constraint and derive optimality conditions for (P) using standard Lagrangian
duality as in [4, Chap. 3]. However, for general domainsD, it is unclear whether
multiplier-based optimality conditions exist.

3.2 A Relaxation Approach

Our relaxation strategy employs a fairly broad class of penalty functions, de-
fined by the following properties.

Definition 1 (Regular Penalty) A function φ : R→ R+ is a regular penalty
if the following conditions hold:

C.1 φ is a continuously differentiable convex function;
C.2 φ(r) = 0 for all r ≤ 0;
C.3 φ(r) > 0 for all r > 0;
C.4 φ has a Lipschitz continuous gradient with modulus Lφ:

(∀t, s ∈ R) : |φ′(t)− φ′(s)| ≤ Lφ|t− s|. (3.4)

Assumption C.4 implies that for all t, s ∈ R

|φ(t)− φ(s)− φ′(s)(t− s)| ≤ Lφ

2
|t− s|2. (3.5)

In addition, since φ ≥ 0, φ(0) = 0, and φ′ is Lipschitz, we have |φ′(t)| ≤ Lφ|t|.
A concrete example for a regular penalty function φ : R→ R+ is as follows.
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Fig. 1: The regular penalty function (3.6) for various values of δ.

Example 1 Consider the function r : R→ R given by

r(t) ≜


t− 1

2 if t ≥ 1,

t3 − t4

2 if t ∈ (0, 1),
0 else.

It can be easily checked that r(·) satisfies conditions C.1-C.4. In particular, r
is globally Lipschitz smooth with |r′(t)| ≤ 1 for all t ∈ R. Let δ > 0 and define

φ(t) ≜ r(δ−1t). (3.6)

Then, |φ′(t)| ≤ 1
δ ≡ Lφ for all t ∈ R. See Figure 1 for an illustration. We see

that as δ → 0+ the map t 7→ r(t/δ) approximates the indicator function equal
to 0 on (−∞, 0] and +∞ in (0,∞).

We employ regular penalty functions to convert the pointwise constraints
(3.2) to expectation constraints. Let θ(z, ξ) ∈ H1(D) for z ∈ Z be defined
pointwise by

θ(z, ξ) ≜ ψ(·, ξ)− (uf(·,ξ) + Sξ(z)). (3.7)

The evaluation of θ(z, ξ) at x ∈ D is denoted by θ(z, ξ)[x]. Observe that
θ(z, ξ) ≤ 0 a.s. whenever z ∈ C∩Zad. Next, consider the function Φ : Z → R+,
defined by

Φ(z) ≜ EP[F (θ(z, ξ))] ∀z ∈ Z, (3.8)

where for measurable functions v : D → R, F is defined by

F (v) ≜
∫
D

φ(v(x)) dx. (3.9)

Using Φ, we arrive at the family of relaxed optimization problems

min
z∈Zad

{j(z) |Φ(z) ≤ ε} , (Pε)

where ε > 0 is a given tolerance for constraint violation. The next lemma
shows that our relaxation approach has similar implications in terms of con-
straint violation like standard chance constraints: Making Φ small guarantees
constraint satisfaction with high probability.
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Lemma 1 Let φ : R → R+ be a regular penalty function. For a fixed z ∈ Z,
we have

θ(z, ξ) ≤ 0 a.e./a.s. ⇔ Φ(z) = 0.

Proof Fix z ∈ Z. Clearly, if θ(z, ξ) ≤ 0 a.e./a.s., then φ(θ(z, ξ)) = 0 a.e./a.s.
Consequently, Φ(z) = 0. Conversely, suppose Φ(z) = 0, and let M ⊂ D × Ω
be a set of positive measure on which θ(z, ξ) > 0. Without loss of generality,
assume that θ(z, ξ) ≤ 0 holds on (D ×Ω) \M . Then, by the properties of φ,
we would have φ(θ(z, ξ)) > 0 a.e. on M . It follows that

0 <

∫
M

φ(θ(z, ξ(ω))[x]) dx dP(ω) ≤ EP

[∫
D

φ(θ(z, ξ)[x]) dx

]
= Φ(z) = 0,

which is a contradiction. ■

Remark 2 The use of Φ is linked to probability constraints and the original
local setting. As Lemma 1 shows, Φ(z) ≤ 0 is equivalent to the original con-
straint (3.2). By Markov’s inequality, we have for any c > 0 that

P(F (θ(z, ξ)) ≥ c) ≤ 1

c
Φ(z).

Choosing ε = c2 in (1.6), any point z ∈ Zad that satisfies (1.6) would then
fulfill

P(F (θ(z, ξ)) < c) ≥ 1− c.

Thus, although the relaxation allows for violations of the local state constraint,
the probability of such events can be tamed by choosing moderate values for
c; e.g., c = 10−2 and ε = 10−4.

3.3 Analysis of Φ

We now derive the regularity properties of the function Φ that are needed for
the development of optimization algorithms. We start by providing technical
lemmata on integral functionals that make the verifying the properties of Φ
more readable.

Lemma 2 Let φ : R→ R+ be a regular penalty function. Define the functional
F : H1

0 (D) → R+ by (3.9). Then, F is convex, globally Lipschitz continuous
with modulus LF , and Fréchet differentiable.

Proof Convexity is straightforward. For global Lipschitz continuity, we have
for any u, v ∈ H1

0 (D) the inequality

|F (v)− F (u)| ≤
∫
D

|φ(v(x))− φ(u(x))| dx ≤ Lφ∥v − u∥L1(D).



Title Suppressed Due to Excessive Length 11

Since D is bounded, we also have Lipschitz continuity in L2(D) with modulus
L̂F ≜ LφVol(D)1/2. Furthermore, letting cemb be the constant from Poincaré’s
inequality, we can set LF ≜ cembL̂F and obtain

|F (v)− F (u)| ≤ LF ∥v − u∥H1
0 (D).

Next, we prove differentiability. Fix arbitrary u, v ∈ H1
0 (D) and t > 0. From

(3.5), we have for almost all x ∈ D:

− t
2Lφ

2
|u(x)|2 ≤ φ(v(x) + tu(x))− φ(v(x))− tφ′(v(x))u(x) ≤ t2Lφ

2
|u(x)|2.

By dividing both sides by t > 0, integrating over x, and letting t → 0+, the
Lebesgue dominated convergence theorem implies that

F ′(v;u) = lim
t→0+

F (v + tu)− F (v)

t
=

∫
D

φ′(v)u dx.

Since |φ′(v)| ≤ Lφ|v| a.e. and |v| ∈ H1
0 (D), (φ′(u), ·)L2(D) defines a bounded

linear functional on H1
0 (D). Hence, F ′(v; ·) is linear and continuous on H1

0 (D)
and therefore, F is Gâteaux differentiable at v. Since F is Lipschitz, Gâteaux
and Hadamard differentiability coincide, see e.g., [4, Prop. 2.49].

To prove that F is in fact Fréchet differentiable, let u, v ∈ H1
0 (D). For

almost every x ∈ D, we have

|φ(v(x) + u(x))− φ(v(x))− φ′(v(x))u(x)| ≤ Lφ

2
|u(x)|2.

Integrating over x ∈ D and using Poincaré’s inequality, we have

|F (v + u)− F (v)− F ′(v)u|
∥u∥H1

0 (D)

≤ Lφcemb

2
∥u∥H1

0 (D).

Passing to the limit as ∥u∥H1
0 (D) → 0 we obtain the assertion. ■

Proposition 1 The function Φ : Z → R+ defined in (3.8) is convex, globally
Lipschitz continuous, and continuously differentiable with derivative

Φ′(z)h = EP

[
(φ′(θ(z, ξ)),−S(h))L2(D)

]
∀h ∈ Z (3.10)

and Lipschitz continuous gradient,

∇Φ(z) = −EP[ηξ] (3.11)

where η = ηξ(z) ∈ H1
0 (D), for fixed ξ ∈ Ξ, fulfills∫

D

κ(x, ξ)∇η(x) · ∇v(x) dx =

∫
D

φ′(θ(z, ξ))v(x) dx ∀ v ∈ H1
0 (D). (3.12)
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Proof The convexity of Φ is a result of the linearity of S and the convexity of
the regular penalty function φ. To see that Φ is globally Lipschitz, we appeal
to the properties of F . The Lipschitz continuity of F established in Lemma 2
immediately gives for all u1, u2 : Ω → H1

0 (D),

|F (u1)− F (u2)| ≤ LF ∥u1 − u2∥H1
0 (D) a.s.

Squaring both sides followed by taking the expectation yields

EP
[
|F (u1)− F (u2)|2

]
≤ LFEP

[
∥u1 − u2∥2H1

0 (D)

]
.

Applying Jensen’s inequality to the left-hand side and taking the square root
of both sides yields

|EP[F (u1)]− EP[F (u2)]| ≤
√
LFEP[∥u1 − u2∥2H1

0 (D)
].

It follows that
U ∋ u 7→ Φ̂(u) ≜ EP[F (u)]

is globally Lipschitz. Clearly, Φ̂(θ(z, ξ)) = Φ(z). Using to the linearity of S,
we deduce that

|Φ(z1)− Φ(z2)| = |EP[F (θ(z1, ξ))]− EP[F (θ(z2, ξ))]|

≤
√
LFEP[∥S(z1)− S(z2)∥2H1

0 (D)
]

≤M∥z1 − z2∥L2(D)

for some M > 0. Notice that the constant terms uf and ψ disappear in the
Lipschitz bound on F before estimating from above by the H1

0 (D)-norm.
Next, we show that Φ is continuously Fréchet differentiable with Lipschitz

derivative. Since S(z) + uf is a continuous affine mapping from Z into U , we
need only consider Φ̂(·). Using the chain rule [34, Th. 20.9], we would then
obtain the formula in (3.10). For any u, h ∈ U , we will demonstrate that

Φ̂′(u)h = EP

[∫
D

φ′(u)h dx

]
. (3.13)

Using the same arguments as in Lemma 2, the functional on the righthand
side in (3.13) is clearly bounded and linear on U .

By the assumptions on the regular penalty function φ, we have for all
u, h ∈ U ,

−Lφ

2
|h(ω, x)|2 ≤ [φ(u(ω, x) + h(ω, x))− φ(u(ω, x))]− φ′(u(ω, x))h(ω, x)

≤ Lφ

2
|h(ω, x)|2.
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for almost all (x, ω) ∈ D ×Ω. Integrating over D ×Ω yields

−Lφ

2
EP

[∫
D

|h(·, x)|2 dx
]
≤ EP

[∫
D

(φ(u+ h)− φ(u)) dx

]
− EP

[∫
D

φ′(u)h dx

]
=

(
Φ̂(u+ h)− Φ̂(u)

)
− EP

[∫
D

φ′(u)h dx

]
≤ Lφ

2
EP

[∫
D

|h(·, x)|2 dx
]
.

Since U is continuously embedded into L2(Ω,F ,P;Z), there exists a constant
c > 0 such that∣∣∣∣(Φ̂(u+ h)− Φ̂(u)

)
− EP

[∫
D

φ′(u)h dx

]∣∣∣∣ ≤ c∥h∥2U

and it follows that Φ̂ is Fréchet differentiable.
In addition, there exists a constant c′ > 0 for any u, v ∈ U and h ∈ U such

that for almost all ω ∈ Ω we have

(F ′(u(ω))− F ′(v(ω)))h(ω) ≤ Lφ

∫
D

|u(ω)− v(ω)||h(ω)| dx

≤ c′∥u(ω)− v(ω)∥H1
0 (D)∥h(ω)∥H1

0 (D).

(3.14)

Taking the expectation on both sides and applying Hölder’s inequality yields

Φ̂′(u)h− Φ̂′(v)h ≤ c′∥u− v∥U∥h∥U .

Replacing h by −h yields the same inequality with

|Φ̂′(u)h− Φ̂′(v)h| ≤ c′∥u− v∥U∥h∥U .

Then taking the supremum over all h ∈ U with ∥h∥U = 1 proves that Φ̂′ : U →
U∗ is Lipschitz.

It remains to verify (3.11). For any h ∈ Z, it holds that

(φ′(θ(z, ξ)),−S(h))Z = (−S∗φ′(θ(z, ξ)), h)Z a.s.,

where the canonical embedding ιH1
0 ↪→L2 in front of S(h) and its adjoint ιL2↪→H−1

in front of the φ′-term have been suppressed in the notation above. Taking
the expectation of both sides and applying Fubini’s theorem, we then have

Φ′(z)h = (EP[−S∗φ′(θ(z, ξ))], h)Z

for any pair z, h ∈ Z. Finally, by recognizing that ηξ(z) = −S∗
ξφ

′(θ(z, ξ))

solves the adjoint equation (3.12), we deduce the final assertion. ■
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3.4 Pointwise and Uniform Bounds on the Objective and Reduced Gradients

The numerical method considered in the next section requires a number of
bounds on the objective functional, the constraint functional, and the gradients
of the integrands in j and Φ. Based on the structural assumptions, these can be
easily verified using standard a priori bounds in the analysis of linear elliptic
PDEs. We require the following additional properties on j.

Assumption 4 We assume that j : Z → R has the form

j(z) = EP[J0(uξ(z))] + J1(z),

where J0, J1 : Z → R are convex and continuously differentiable and, given
z, h ∈ Z, we have

j′(z)h = EP[J
′
0(uξ(z))u

′
ξ(z)h] + J ′

1(z)h

Moreover, we assume that J ′
0 and J ′

1 map bounded sets into bounded sets.

These assumptions are directly inspired by the model problem (1.2). We gather
several usual bounds that arise from the assumptions, which are necessary for
the convergence analysis in the following sections.

Proposition 2 Let Assumptions 1, 2, and 4 hold.

1. There exist constants Mobj and Mbd such that

|j(z)| ≤Mobj and |Φ(z)| ≤Mbd ∀z ∈ Zad. (3.15)

2. The gradient mapping ∇zJ(z, ξ) has the form

∇zJ(z, ξ) = B∗(ξ)λξ +∇J1(z),

where for fixed ξ ∈ Ξ, λξ solves∫
D

κ(x, ξ)∇λ(x)·∇v(x)dx = −
∫
D

J ′
0(uξ(z))v(x)dx ∀ v ∈ H1

0 (D). (3.16)

3. There exists a constant Madj such that

∥∇zJ(z, ξ)∥Z ≤Madj ∀z ∈ Zad, a.s. (3.17)

4. There exists a constant Mctr > 0 such that

∥∇z(F ◦ θ)(z, ξ)∥Z ≤Mctr ∀z ∈ Zad, a.s. (3.18)

Proof By boundedness of Zad and the continuity of j and Φ there exist uniform
bounds Mobj and Mbd such that (3.15) in 1. holds.

Next, we derive a general bound on the solution operator uξ. Recalling
that uξ(z) = Sξ(z) + uf(·,ξ) solves (2.2), we can use ϕ = uξ in (2.2) as a test
function. If follows from Assumption 1 that

κ0∥uξ(z)∥H1
0 (D) ≤ cemb(∥B(ξ)∥op∥z∥Z + ∥f(ξ)∥Z) (3.19)



Title Suppressed Due to Excessive Length 15

holds for all ξ ∈ Ξ. By assumption, ∥B(ξ)∥op, ∥f(ξ)∥Z ∈ L∞(Ω,F ,P) and
Zad is bounded. Therefore, (3.19) implies the existence of a constant Mst such
that

∥uξ(z)∥H1
0 (D) ≤Mst ∀z ∈ Zad a.s. (3.20)

Similarly, using the standard rules of adjoint calculus, see e.g., [25, Chap. 2],
[33], or [18], we derive a bound for the adjoint equation (3.16) associated with
∇zJ(z, ξ). Denoting the adjoint state by λξ we have

κ0∥λξ∥H1
0 (D) ≤ cemb∥J ′

0(uξ(z))∥Z∗ a.s.

By the properties of J ′
0 and (3.20), there exists a constant M ′

adj > 0 such that

∥λξ∥H1
0 (D) ≤M ′

adj ∀z ∈ Zad a.s.

Consequently, the following bound holds independently of z a.s.:

∥∇zJ(z, ξ)∥Z ≤Madj a.s.

where Madj =M ′
adj∥B(ξ)∥op + supz∈Zad

∥∇J1(z)∥Z .
We can proceed analogously for the constraint mapping by exploiting the

statements in Proposition 1 and using the associated adjoint equation (3.12).
To this end, fix an arbitrary z ∈ Zad. Then the stochastic gradients associated
with the integrand F (θ(z, ξ)) of Φ satisfy (3.12) (excluding the embedding into
Z). Using ηξ = v as a test function and continuing as above for J we have

κ0∥ηξ∥H1
0 (D) ≤ cemb∥φ′(θ(z, ξ))∥Z a.s.

Condition C.4 of Definition 1 implies that ηξ ∈ L∞(Ω,F ,P;H1
0 (D)). Indeed,

this condition readily gives

|φ′(θ(z, ξ))| = |φ′(θ(z, ξ))− φ′(0)| ≤ Lφ|θ(z, ξ)| a.s.

Combining this with (3.19), there exists a constantMctr > 0 (in ω and z ∈ Zad)
such that ∥ηξ∥H1

0 (D) ≤Mctr a.s. We then have for all z ∈ Zad

∥∇z(F ◦ θ)(z, ξ)∥Z ≤Mctr a.s. (3.21)

■

3.5 Asymptotic Considerations

Using the favorable properties of the penalty functional Φ established above,
we now investigate the asymptotic properties of the problem (Pε) as ε ↓ 0. For
convenience, we recall (P) and (Pε) here:

jopt ≜ inf
z
{j(z) | z ∈ C ∩ Zad} , jopt(ε) ≜ min

z∈Zad

{j(z) |Φ(z) ≤ ε}

Let z⋆ and z⋆ε denote controls satisfying j(z⋆) = jopt and j(z⋆ε ) = jopt(ε),
respectively.
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Proposition 3 Suppose Assumptions 1, 2, 3, and 4 are fulfilled. Furthermore,
assume that j is strongly convex. Then, for all sequences εk ↓ 0, the sequence
{z⋆k}k∈N with z⋆k = z⋆εk converges weakly in Z to z⋆.

Proof As discussed above, the assumptions and strong convexity ensure that
both problems have unique optimal solutions z⋆ and z⋆ε . Next, we note that by
Assumption 2 the path of solutions {z⋆ε}ε>0 is uniformly bounded in Z. There-
fore, for any sequence εk ↓ 0, the sequence of unique solutions {z⋆k} admits a
weakly convergent subsequence {z⋆kl

} with limit point z̄. By Proposition 1, Φ
is weakly lower-semicontinuous. It follows from Lemma 1 and

Φ(z̄) ≤ lim inf
l→+∞

Φ(z⋆εkl
) ≤ lim inf

l→+∞
εkl

= 0,

that z̄ is feasible for (P).
Next, by Assumption 3, z ∈ C ∩ Zad is feasible for (Pε) for all ε > 0.

Therefore, we have that j(z⋆ε ) ≤ j(z) ∀z ∈ C ∩ Zad. Since j is convex and
continuous, it is weakly lower-semicontinuous. Hence, for any z ∈ C∩Zad, we
have

j(z̄) ≤ lim inf
l→+∞

j(z⋆kl
) ≤ j(z),

including z = z⋆. Since z⋆ is unique and z̄ is feasible for (P), z̄ = z⋆. Note
that this same argument would hold for every weakly convergent subsequence
of {z⋆k}. It follows by the Urysohn property that the entire sequence {z⋆k}
converges weakly to z⋆.

■

Remark 3 Most of the arguments in the proof of Proposition 3 can be relaxed
to the convex (not strongly convex) case. The statement would then read: for
all sequences εk ↓ 0, there exist a subsequence of solutions {z⋆kl

} with z⋆kl
= z⋆εkl

that converges weakly to a solution of (P).

Remark 4 The arguments in the proof of Proposition 3 could also be used for
the case in which Assumption 3 is relaxed to require that

{z ∈ Zad |Φ(z) ≤ εmin } ≠ ∅

for some minimal, but positive εmin. Therefore, if Assumption 3 cannot be
verified for a given ε > 0, a path-following argument for the relaxed problems
is still available. Either way, we have shown that the mapping

[0,+∞) ∋ ε 7→ z⋆ε ∈ Z

is weakly continuous and for the case when Assumption 3 does hold:

Φ(z⋆ε ) = O(ε) and Φ(z⋆ε ) = o(εq)

for any q ∈ (0, 1). Furthermore, when the integrand has the form (1.2), it is
clear that jopt ≥ jopt(ε) ≥ 0 for all ε, even if Assumption 3 does not hold,
in which case jopt = +∞. However, under the assumptions of Proposition 3,
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this special case of a strongly convex objective can be used to show that
[0,+∞) ∋ ε 7→ z⋆ε ∈ Z is in fact strongly continuous, due to the presence of
the squared-Z-norm in the objective. From this the results of Proposition 3
demonstrate that jopt : [0,∞) → R is continuous everywhere on (0,∞), right
continuous at 0, and decreasing as ε increases. In fact, jopt(ε) would decrease
monotonically as ε increases.

4 The Algorithm

4.1 Stochastic Approximation

To approximate the value function jopt(ε), we introduce an online stochastic
approximation (SA) approach in which data is drawn anew each iteration to
evaluate the objective and constraint functions as well as their derivatives.
Our algorithm is applicable to any convex stochastic optimization problem
with expectation constraints, and hence is not specific to the PDE-constrained
optimization application, although it does apply to it. As such, we assume to
have access to a first-order stochastic oracle (SO) with the following properties.
In the subsequent definition, we use the letter J to refer to quantities related
to the objective function and G for the expectation constraint. Throughout
this section, (·, ·) denotes the inner product on Z and ∥ · ∥ =

√
(·, ·).

Definition 2 (Stochastic Oracle) Let (Ω,F , (Fk)k,P) be a filtered prob-
ability space. Given a control z ∈ Zad and an iteration k, a stochastic oracle
(SO) is a black-box device whose output is a set of random elements Jk(z),
J ′
k(z), Gk(z), and G′

k(z), with the following properties:

1. Jk(z), J ′
k(z), Gk(z), and G′

k(z) are unbiased estimators of j(z), ∇j(z),
Φ(z)− ε, and ∇Φ(z), respectively, in the sense that

E[Jk(z)|Fk] = j(z), E[Gk(z)|Fk] = Φ(z)− ε,

E[J ′
k(z)|Fk] = ∇j(z), E[G′

k(z)|Fk] = ∇Φ(z)
(4.1)

holds a.s.
2. There exists D1 and D2 > 0 independent of z ∈ Zad and k ≥ 1:

∥J ′
k(z)∥ ≤ D1 and ∥G′

k(z)∥ ≤ D2. (4.2)

3. There exists M > 0 independent of z ∈ Zad such that |Gk(z)| ≤M .

We recall that Proposition 2 provides the required bounds on the objective
function gradient for our target PDE-constrained application. To derive the
bound on Gk, Lemma 2 and (3.20) ensure that

|F (θ(z, ξ))− F (θ(z′, ξ))| ≤ ∥uξ(z)− uξ(z
′)∥H1

0 (D) ≤ 2Mst a.s. ∀ z, z′ ∈ Zad.

Taking z′ ∈ Zad such that θ(z′, ξ) ≤ 0, Lemma 1 indicates that F (θ(z′, ξ)) = 0
a.s., which yields

|F (θ(z, ξ))| ≤ 2Mst ∀z ∈ Zad a.s.
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Hence, the single samples Jk(z) = J(z, ξk) and Gk(z) = F (θ(z, ξk)), where ξk
is an independent and identically distributed (i.i.d.) copy of ξ, produce a SO
when endowed with the filtration F0 = {∅, Ω} and Fk = σ({ξ1, . . . , ξk}). In
the following example, we see that these observations can be easily extended
to (mini) batches of samples.

Example 2 A common example for an SO is to construct Monte-Carlo esti-
mators of the random data involved in the stochastic optimization problem.
To obtain such an SO, let m ≥ 1 be a given integer (the sample budget) and
assume it is easy to simulate m i.i.d. copies of the random element ξ. Let
ξk = (ξ

(1)
k , . . . , ξ

(m)
k ) denote the sample at iteration k and set

Jk(z) ≜
1

m

m∑
t=1

J(z, ξ
(t)
k ), J ′

k(z) ≜
1

m

m∑
t=1

∇zJ(z, ξ
(t)
k ),

Gk(z) ≜
1

m

m∑
t=1

F (θ(z, ξ
(t)
k )), G′

k(z) ≜
1

m

m∑
t=1

∇z(F ◦ θ)(z, ξ(t)k )

for all z ∈ Zad. It follows directly from the above discussion that this mecha-
nism gives rise to an admissible SO. Note that the generation of these estima-
tors requires solving a sequence of PDEs, one for each random variable ξ(t)k .
Hence, the computational complexity of this SO at each iteration k is m×C,
where C is an upper bound on the cost of evaluating the objective function,
the constraint, and their derivatives.

4.2 A penalty-based first-order algorithm

Our algorithmic strategy begins with the construction of a suitable penalty
function with adaptive weights. Given z ∈ Zad, consider the function

Lγ,k(z, w) ≜ Jk(z) +
w

γ
Gk(z) (4.3)

where w ≥ 0 is a penalty parameter (chosen by the algorithm), γ > 0 is
a user-specified parameter, and k ≥ 1 is an iteration counter. The ratio w/γ
measures the importance of the constraint violation over reducing the objective
function value while executing the optimization algorithm, and thus we can
interpret (4.3) as a penalty formulation of the original stochastic optimization
problem. Querying the SO at the pair (z, w) allows us to evaluate the function
Lγ,k(z, w), as well as

L′
γ,k(z, w) = J ′

k(z) +
w

γ
G′

k(z). (4.4)

Our numerical treatment of the stochastic optimization problem builds on
successive restarts of a master algorithm, to be denoted X(z,w)

T (α, γ), which is
formally described in Algorithm 1. This procedure takes as inputs an initial
guess (z, w) ∈ Zad×[0,∞), an index set of iteration counters T ⊆ N∪{0,+∞},
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Algorithm 1: Master Algorithm X
(z,w)
T (α, γ)

1: Input: T ⊆ N iteration counter set, Initial condition (z, w) ∈ Zad × [0,∞) ;
Parameters α, γ ∈ (0,∞).

2: Output: Sequence {(zt,wt),minT ≤ t ≤ supT+ 1}.
3: Set zminT = z and wminT = w;
4: for t = minT, . . . , supT do
5: Compute zt+1 = PZad

(zt − γ
α
L′
γ,t(z

t,wt));
6: Compute wt+1 = max{0,wt +Gt(zt) + (G′

t(z
t), zt+1 − zt)};

7: end for

as well as the user-specified parameters α and γ, whose role will be ex-
plained below. To simplify the presentation, we assume that the batch T

is a set of adjacent integers, with smallest element minT ∈ N ∪ {0} and
largest element supT ∈ N∪{0,+∞}, i.e T = {minT,minT+1, . . . , supT}. If
supT = ∞, we define supT+1 ≜ ∞. The master process generates a sequence
{(zt,wt);minT ≤ t ≤ supT+ 1} via the updates

zt+1 = PZad
(zt − γ

α
L′
γ,t(z

t,wt)),

wt+1 = max{0,wt +Gt(z
t) + (G′

t(z
t), zt+1 − zt)},

where PZad
(z) ≜ argminz′∈Zad

1
2∥z

′ − z∥2 is the orthogonal projection onto
Zad. The first updating equation is just a projected gradient descent step,
using the sampled data embodied in the random variable L′

γ,t(z
t,wt) as first-

order feedback. The second step updates the penalty parameter via a first-
order approximation of the sampled constraint function. If the local linearized
model has a positive value, then the iterates are moving away from the feasible
set Zad. The algorithm reacts to this by increasing the weight wt+1.

The master algorithm is the basic pillar in our restart-based optimization
strategy, culminating in Algorithm 2. This scheme takes as inputs a sequence
of time iteration counters T1, . . . ,Ts (the "batches"), and a corresponding
sequence of optimization parameters (αj , γj), 1 ≤ j ≤ s, as well as suitably
chosen initial conditions (z1j ,w

1
j ), 1 ≤ j ≤ s. In practical implementations, we

choose the batches of nearly equal size. Specifically, given the predefined total
number of iterations N , we let the user define another input parameter ∆N ∈
{1, . . . , N}, which defines the length of batches. To be precise, s ≜ ⌈ N

∆N
⌉ is

the number of restarts (meaning the number of calls of the master algorithm).
We then set |Tj | = ∆N for 1 ≤ j < s, and |Ts| = N − (s − 1)∆N . In other
words, all batches except the last one have the same size ∆N .

Once the batches have been defined in this way, we construct a sequence
{(ztj ,wt

j); 1 ≤ t ≤ supTj +1}, by calling the master algorithm X
(z1j ,w

1
j )

Tj
(αj , γj).

We warm-start each call to the master algorithm by setting

(z1j ,w
1
j ) = (z

supTj−1+1
j−1 ,w

supTj−1+1
j−1 )

for j = 1, . . . , s. By default, we set T0 = {0}, and provide inputs z1 = z10, w1 =
w1
0 to the algorithm. In a final post-processing step, we concatenate these
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Algorithm 2: Epoch-dependent online SA (OSA)
1: Input: 1 ≤ ∆N ≤ N . Initial condition z0 ∈ Zad and w0 = 0;

Epoch-specific parameters {αj}sj=1 and {γj}sj=1;
2: Set z10 = z0 and w1

0 = w0;
3: Set s ≡ ⌈ N

∆N
⌉;

4: Construct batches T0,T1, . . . ,Ts with T0 = {0}, and

Tj = {1, . . . , ∆N} for 1 ≤ j < s,

Ts = {1, . . . , N − (s− 1)∆N}.

5: for j = 1, . . . , s do
6: Set z1j = z

supTj−1+1

j−1 and w1
j = w

supTj−1+1

j−1 ;

7: Compute {(ztj ,wt
j); 1 ≤ t ≤ supTj + 1} by calling master algorithm X

(z1j ,w
1
j )

Tj
(αj , γj);

8: end for
9: For k ∈ {1, . . . , N}, set zk = ztj and wk = wt

j for k − t = (j − 1)∆N , t ∈ Tj ;
10: Report z̄N = 1

N

∑N
k=1 zk.

trajectories to obtain a sequence {(zk, wk)}Nk=1, and its ergodic average z̄N ≜
1
N

∑N
k=1 zk. The specific concatenation procedure is given by

zk = ztj and wk = wt
j for k = (j − 1)∆N + t, 1 ≤ j ≤ s, t ∈ Tj . (4.5)

We describe this procedure in Algorithm 2.

Remark 5 Note that Algorithm 2 is still not an executable scheme since we
have not specified a strategy to choose the epoch-dependent parameters αj

and γj . In the convergence analysis (Section 4.4), we will pin down a simple
rule determining these parameters.

4.3 Preparatory Estimates for the master algorithm

Algorithm 2 is defined by s consecutive restarts of the master, where s is a
user-defined parameter. Each restart differs only in the initial guess and the
parameters (αj , γj). We begin the analysis of the complexity of Algorithm 2 by
analysing the master algorithm X

(z,w)
T (α, γ) for given inputs (T, (z, w), α, γ).

Since the restarts differ only in these input parameters, all estimates derived
in this section are valid when applied to the analysis of Algorithm 2.

Let A0 ≜ {∅, Ω} and At ≜ σ(zτ ; τ ≤ t) be the natural filtration associated
with the process defining X(z,w)

T (α, γ). We proceed with our analysis in several
steps.
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By definition,

1

2
(wt+1)2 ≤ 1

2

[
wt +Gt(z

t) + (G′
t(z

t), zt+1 − zt)
]2

=
1

2
(wt)2 + wt

[
Gt(z

t) + (G′
t(z

t), zt+1 − zt)
]

+
1

2

[
Gt(z

t) + (G′
t(z

t), zt+1 − zt)
]2
.

Using the triangle inequality, it follows that

|Gt(z
t) + (G′

t(z
t), zt+1 − zt)| ≤ |Gt(z

t)|+ |(G′
t(z

t), zt+1 − zt)|
≤M + |sk| ≤M +D2R,

where R denotes the diameter of the feasible set Zad. This in turn yields

1

2
(wt+1)2 ≤ 1

2
(wt)2+wt

[
Gt(z

t) + (G′
t(z

t), zt+1 − zt)
]
+

1

2
(M +D2R)

2. (4.6)

Lemma 3 Consider the master algorithm X
(z,w)
T (α, γ) with pseudo-code given

in Algorithm 1. Then, for all minT ≤ t1 ≤ t2 ≤ supT, we have

t2∑
t=t1

Gt(z
t) ≤ wt2+1 − wt1 +D2

t2∑
t=t1

∥zt+1 − zt∥.

Proof For all t, it holds true that

wt+1 = max{0,wt +Gt(z
t) + (G′

t(z
t), zt+1 − zt)}

≥ wt +Gt(z
t) + (G′

t(z
t), zt+1 − zt)

≥ wt +Gt(z
t)− ∥G′

t(z
t)∥∥zt+1 − zt∥

≥ wt +Gt(z
t)−D2∥zt+1 − zt∥.

Rearranging, this yields

Gt(z
t) ≤ wt+1 − wt +D2∥zt+1 − zt∥.

Summing over t = t1, . . . , t2 verifies the claim. ■

In the following we need the Pythagorean identity

2⟨w − v, u− v⟩ = ∥w − v∥2 − ∥w − u∥2 + ∥u− v∥2. (4.7)

Recall that our primal update zt is a forward step involving the gradient
estimator (4.4). The optimality condition for the update zt+1 therefore reads
as

(zt+1 − zt +
γ

α
L′
γ,t(z

t,wt), z − zt+1) ≥ 0 ∀ z ∈ Zad.
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This implies

(γJ ′
t(z

t), z − zt+1) + wt(G′
t(z

t), z − zt+1)

≥ α(zt − zt+1, z − zt+1) ∀ z ∈ Zad.
(4.8)

Convexity and (4.7) gives then the a.s. inequality

Lγ,t(z,w
t) ≥Lγ,t(z

t,wt) + (L′
γ,t(z

t,wt), zt+1 − zt)

+
α

γ

(
1

2
∥zt+1 − z∥2 − 1

2
∥zt − z∥2 + 1

2
∥zt+1 − zt∥2

)
for all z ∈ Zad. Splitting up terms, this reads explicitly as

γJt(z) + wtGt(z) +
α

2

(
∥zt − z∥2 − ∥zt+1 − z∥2

)
≥ γJt(z

t) + (γJ ′
t(z

t), zt+1 − zt) +
α

2
∥zt+1 − zt∥2

+ wt
(
Gt(zt) + (G′

t(z
t), zt+1 − zt)

) (4.9)

for all z ∈ Zad.

Lemma 4 Consider the master algorithm X
(z,w)
T (α, γ) with pseudo-code given

in Algorithm 1. For all t ∈ T, we have

∥zt+1 − zt∥ ≤ γ

α
D1 +

wt

α
D2. (4.10)

Proof By choosing z = zt ∈ Zad in (4.8), we readily obtain

α∥zt+1 − zt∥2 ≤ γ(J ′
t(z

t), zt − zt+1) + wt(G′
t(z

t), zt − zt+1)

(4.2)
≤

(
γD1 + wtD2

)
∥zt+1 − zt∥

and rearranging yields (4.10). ■

For the following lemma, we recall that At = σ({zτ ; τ ≤ t}) encapsulates the
information generated by the stochastic process up to iteration t.

Lemma 5 Let ẑ ∈ Zad be such that Φ(ẑ) = 0. Then, for all t ∈ T,

E[wtGt(ẑ)|At] = −εE(wt|At). (4.11)

Proof Via the Tower property of conditional expectations and (4.1), we im-
mediately deduce that

E[wtGt(ẑ)|At] = E[E(wtGt(ẑ)|At−1)|At]

= E[wtE(Gt(ẑ)|At−1)|At]

= E[wt(Φ(ẑ)− ε)|At]

= −εE[wt|At].

■
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Lemma 6 For all t ∈ T, we have

wt −D2R ≤ wt+1 ≤ wt +M (4.12)

Proof We start with establishing the upper bound. From convexity, we get

Gt(z
t) + (G′

t(z
t), z − zt) ≤ Gt(z). (4.13)

Hence, by definition of the updating we have

(wt+1)2 ≤
(
wt +Gt(z

t) + (G′
t(z

t), zt+1 − zt)
)2 ≤

(
wt +Gt(z

t+1)
)2
.

Hence, by the triangle inequality, and part 3 of Definition 2, we conclude

|wt+1| ≤ |wt +Gt(z
t+1)| ≤ |wt|+ |Gt(z

t+1)|
≤ wt +M.

For the lower bound, we use part 2 of Definition 2 to observe that

|wt+1 − wt| ≤ |Gt(z
t) + (G′

t(z
t), zt+1 − zt)|

≤ |Gt(z
t)|+ ∥G′

t(z
t)∥ · ∥zt+1 − zt∥

(4.2)
≤ M +D2R.

■

We remark that Lemma 6 implies that for all t1, t2 ∈ T,

wt1+t2 ≥ wt1 − t2(M +D2R), (4.14)

Set Lt ≜ 1
2 [(w

t+1)2 − (wt)2].

Lemma 7 For all t ∈ T,

Lt ≤ wt[Gt(z
t) + (G′

t(z
t), zt+1 − zt)] +

1

2
(M +D2R)

2. (4.15)

Proof This is (4.6). ■

The next result is fundamental to our approach. It gives a drift lemma for the
penalty process {wt}t∈T, in the spirit of [37]. This result will be instrumental
to prove an L1(Ω,A,P) bound on the penalty process. The next Lemma shows
that the penalty process {wt}t satisfies the conditions in [37, L. 5].

Lemma 8 Let T = N and consider the master algorithm X
(z,w)
T (α, γ). Let

ε < 2(M +D2R) and n an arbitrary integer. Then, for each t ∈ N, we have

|wt+1 − wt| ≤M +D2R and (4.16)

E[wt+n − wt|At−1] ≤
{

− ε
2n if wt ≥ δ(ε, n)

n(M +D2R) if wt < δ(ε, n),
(4.17)

where

δ(ε, n) ≜
εn

2
+

α

nε
R2 +

2

ε

[
γD1R+

1

2
(M +D2R)

2

]
+ n(M +D2R). (4.18)



24 Drew P. Kouri, Mathias Staudigl, Thomas M. Surowiec

Proof Condition (4.16) is just a restatement of Lemma 6. To verify (4.17),
recall that Lt =

1
2 (w

t+1)2 − 1
2 (w

t)2. Condition (4.8) is equivalent to

γ(J ′
t(z

t), zt+1 − zt) + wt(G′
t(z

t), zt+1 − zt) +
α

2
∥zt+1 − zt∥2

≤ γ(J ′
t(z

t), z − zt) + wt(G′
t(z

t), z − zt) +
α

2
∥zt − z∥2 − α

2
∥zt+1 − z∥2

for all z ∈ Zad. Adding wtGt(z
t) to both sides and using (4.13), it follows that

wt
[
Gt(z

t) + (G′
t(z

t), zt+1 − zt)
]

≤ γ(J ′
t(z

t), z − zt+1) + wtGt(z)

+
α

2

(
∥z − zt∥2 − ∥z − zt+1∥2 − ∥zt+1 − zt∥2

)
≤ γ∥J ′

t(z
t)∥ · ∥z − zt+1∥+ wtGt(z) +

α

2

(
∥z − zt∥2 − ∥z − zt+1∥2

)
(4.2)
≤ γD1R+ wtGt(z) +

α

2

(
∥z − zt∥2 − ∥z − zt+1∥2

)
.

(4.19)

By (4.15) and (4.19), we readily obtain

Lt ≤ γD1R+ wtGt(ẑ) +
α

2

(
∥ẑ − zt∥2 − ∥ẑ − zt+1∥2

)
+

1

2
(M +D2R)

2.

for all t ≥ 0 and ẑ ∈ Zad. Therefore, for all t ≥ 1 and n ≥ 1 we get

1

2
(wt+n)2 − 1

2
(wt)2 =

t+n−1∑
τ=t

Lτ

≤ n

[
γD1R+

1

2
(M +D2R)

2

]
+
α

2
R2 +

t+n−1∑
τ=t

wτGτ (ẑ).

Whence,

(wt+n)2 ≤ (wt)2 + 2n

[
γD1R+

1

2
(M +D2R)

2

]
+ αR2 + 2

t+n−1∑
τ=t

wτGτ (ẑ).

Let us pick a point ẑ ∈ Zad for which E[Gt(ẑ)|At] = −ε, i.e. a feasible control
satisfying Φ(ẑ) = 0. Lemma 5 and the law of iterated expectations shows that
for τ ≥ t, we have

E (wτGτ (ẑ)|At−1) = E
[
E(wtGτ (ẑ)|Aτ )|At−1

]
= −εE [E(wτ |Aτ )|At−1]

= −εE[wτ |At−1].
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Then, taking At−1-conditional expectations on both sides gives

E[(wt+n)2|At−1]

≤ (wt)2 + 2n
[
γD1R+ 1

2 (M +D2R)
2
]
+ αR2 − 2ε

t+n−1∑
τ=t

E[wτ |At−1]

≤ (wt)2 + 2n
[
γD1R+ 1

2 (M +D2R)
2
]
+ αR2 − 2ε

n−1∑
j=1

E[wt+j |At−1]

(4.14)
≤ (wt)2 + 2n

[
γD1R+ 1

2 (M +D2R)
2
]
+ αR2 − 2ε

n−1∑
j=0

(
wt − j(M +D2R)

)
≤ (wt)2 + 2n

[
γD1R+ 1

2 (M +D2R)
2
]
+ αR2 − 2εnwt + εn2(M +D2R)

= (wt)2 − εnwt + n
[
2
(
γD1R+ 1

2 (M +D2R)
2)
)
+ εn(M +D2R)− εwt + α

nR
2
]
,

where we have used
∑n−1

j=1 j =
n(n−1)

2 ≤ n2

2 in the fourth inequality. From this
we deduce that if wt ≥ δ(ε, n), then

E[(wt+n)2|At−1] ≤ (wt)2 − εnwt − ε2n2

2
≤ (wt − ε

2
n)2.

This, finally, leads to the bound

E[wt+n|At−1] ≤
√
E[(wt+n)2|At−1] ≤ wt − ε

2
n

provided that wt ≥ δ(ε, n). Conversely, if wt < δ(ε, n), then we can use (4.16)
to obtain wt+n − wt ≤ n(M +D2R). ■

Corollary 1 Under the same assumptions as in Lemma 8, we have for all
t ≥ 0,

E[wt] ≤ δ(ε, n) +
8n(M +D2R)

2

ε
log

(
1 +

32(M +D2R)
2

ε2
e

ε
8(M+D2R)

)
.

Proof This follows from Lemma 8 and Part 1) of [37, L. 5]. ■

We remark that the constant

C ≜
8(M +D2R)

2

ε
log

(
1 +

32(M +D2R)
2

ε2
e

ε
8(M+D2R)

)
(4.20)

is in fact an absolute constant, independent of algorithm parameters. We fur-
ther remark, that if we choose n = ⌈

√
∆⌉, α = ⌈∆⌉ and γ =

√
∆ for some

∆ > 0, then
E[wt] ≤ δ(ε, ⌈

√
∆⌉) + ⌈

√
∆⌉C = O(

√
∆). (4.21)
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Corollary 2 Suppose supT < ∞. Then, for any minT ≤ t1 < t2 ≤ supT,
we have

t2∑
t=t1

Gt(z
t) ≤ wt2+1 +D1D2(t2 − t1 + 1)

γ

α
+
D2

2

α

t2∑
t=t1

wt. (4.22)

In particular, if minT = t0 + 1, supT = t0 + ∆ for some ∆ ∈ N, and α =
∆, γ =

√
∆, then

E

[∑
t∈T

Gt(z
t)

]
≤ O(

√
∆) (4.23)

Proof Combining Lemma 3 with (4.10) yields immediately (4.22). Now, using
Corollary 1, together with (4.21), it follows that

E

[
t0+∆∑
t=t0+1

Gt(z
t)

]
≤ O(

√
∆) +D1D2

√
∆+

D2
2

∆
O(∆

√
∆) = O(

√
∆).

■

4.4 Main Convergence Argument

In this section, we give detailed proofs on the convergence properties of Al-
gorithm 2. Recall, that we construct the sequences {(zk, wk)}Nk=1 by con-
catenating the trajectories produced by the master algorithm on the batches
T1, . . . ,Ts, as described in (4.5). We let F0 ≜ {∅, Ω} and Fk ≜ σ(z1, . . . , zk),
denote the natural filtration induced by the so-constructed process. To em-
phasize that the batches are computed using i.i.d. information, we let Gj,t(z)
and Jj,t(z) represent the random estimators reported by the SO in epoch
j ∈ {1, . . . , s} and inner iteration t ∈ Tj at position z ∈ Zad, and let
{(ztj ,wt

j), 1 ≤ t ≤ supTj +1} denote the subsequence computed by the master

algorithm X
(z1j ,w

1
j )

Tj
(αj , γj) in the j-th restart. The filtration used to measure

the concatenated process {(zk, wk)}Nk=1 is intrinsically related to the filtration
induced by the master process {Aj,t}

supTj

t=0 . Specifically, if k = (j − 1)∆N + t

for some t ∈ Tj , we have Fk = σ
(⋃j−1

i=1{Ai,t}supTi

t=0 ∪ Aj,1 ∪ . . . ∪ Aj,t

)
.

Our first result is a bound on the expected constraint violation in terms of the
ergodic average.

Proposition 4 Consider Algorithm 2 with epochs j ∈ {1, . . . , s} and epoch-
specific step sizes γj =

√
∆N and αj = ∆N , where ∆N ≜ ⌊Na⌋ for some

a ∈ (0, 1]. Then,

E[Φ(z̄N )] ≤ O(N−a/2)(1 +O(Na−1)) + ε, (4.24)

where ε > 0 is the a-priori fixed relaxation parameter.
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Proof Corollary 2 gives for each j = 1, 2, . . . , s− 1,

j∆N∑
k=(j−1)∆N+1

Gk(zk) =

∆N∑
t=1

Gj,t(z
t
j)

≤ w∆N+1
j − w1

j +
γj
αj
∆ND1D2 +

D2
2

αj

∆N∑
t=1

wt
j

= w1
j+1 − w1

j +
γj
αj
∆ND1D2 +

D2
2

αj

∆N∑
t=1

wt
j ,

where the last equality uses the definition w1
j+1 = w∆N+1

j . Furthermore, for
j = s, Corollary 2 yields

N∑
k=(s−1)∆N+1

Gk(zk) =

N−(s−1)∆N∑
t=1

Gs,t(z
t
s)

≤ wN−(s−1)∆N+1
s − w1

s +
γs
αs
∆ND1D2 +

D2
2

αj

N−(s−1)∆N∑
t=1

wt
j ,

Therefore,

N∑
k=1

Gk(zk) =

s−1∑
j=1

j∆N∑
k=(j−1)∆N+1

Gk(zk) +

N∑
k=(s−1)∆N+1

Gk(zk)

=

s−1∑
j=1

∆N∑
t=1

Gj,t(z
t
j) +

N−(s−1)∆N∑
t=1

Gs,t(z
t
s)

≤ ∆ND1D2

s∑
j=1

γj
αj

+

s∑
j=1

D2
2

αj

∑
t∈Tj

wt
j

+ (w1
2 − w1

1) + (w1
3 − w1

2) + . . .+ (w1
s − w1

s−1) + (wN−(s−1)∆N+1
s − w1

s)

≤ wN−(s−1)∆N+1
s +∆ND1D2

s∑
j=1

γj
αj

+

s∑
j=1

D2
2

αj

∑
t∈Tj

wt
j .

Corollary 1 implies

E
[
wN+1−(s−1)∆N
s

]
≤ δ(ε, n) +

8n(M +D2R)
2

ε
log

(
1 +

32(M +D2R)
2

ε2
e

ε
8(M+D2R)

)
and

E
[
wt
j

]
≤ δ(ε, n) +

8n(M +D2R)
2

ε
log

(
1 +

32(M +D2R)
2

ε2
e

ε
8(M+D2R)

)
,
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where n and ε are to be chosen. In particular, setting n = ⌈
√
∆N⌉, it follows

from (4.21) that E[wN+1−(s−1)∆N
s ] ≤ O(

√
∆N ), and E[wt

j ] ≤ O(
√
∆N ). Thus,

taking expectations on both sides of the penultimate display, and using the
specification γj =

√
∆N , αj = ∆N for all j ∈ {1, 2, . . . , s}, as well as s =

⌈N/∆N⌉, we arrive at following full sequence counterpart to (4.23):

E

[
N∑

k=1

Gk(zk)

]
≤ O(

√
∆N ) +D1D2s

√
∆N +D2

2O(s
√
∆N )

= O(s
√
∆N ) (1 +O(∆N/N)) .

By choosing ∆N = ⌊Na⌋ for a ∈ (0, 1], it follows O(s
√
∆N ) = O(N1−a/2).

Hence,

E

[
N∑

k=1

Gk(zk)

]
≤ O(N1−a/2)(1 +O(Na−1))

The law of iterated expectations and Jensen’s inequality implies

1

N
E

[
N∑

k=1

Gk(zk)

]
=

1

N
E

[
N∑

k=1

(Φ(zk)− ε)

]
≥ E[Φ(z̄N )]− ε,

where we have used the convexity of the penalty function Φ, established in
Proposition 1. Whence, we arrive at the expected constrained violation bound

E[Φ(z̄N )] ≤ O(N−a/2)(1 +O(Na−1)) + ε. (4.25)

■

Remark 6 If we choose a = 1, then no restart effectively takes place and we
recover the standard O(N−1/2) constraint violation bound from [37]. Restart
leads to slightly worse constraint violation bounds, but comes with the deci-
sive advantage that it allows us to choose larger, epoch-dependent, step sizes.
This has potentially significant impacts on the practical performance of the
algorithm, as we will demonstrate in Section 5.

We conclude the analysis of Algorithm 2 by proving a convergence rate in
terms of objective function values. Following the notation of Proposition 3, we
fix ε > 0 and denote any corresponding solution to (Pε) by z⋆ε .

Theorem 1 Consider Algorithm 2 with epochs j ∈ {1, . . . , s} and epoch-
specific step sizes γj =

√
∆N and αj = ∆N . If ∆N = ⌊Na⌋ for a ∈ (0, 1],

then

E[j(z̄N )− j(z⋆ε )] ≤ O(N−a/2). (4.26)
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Proof Let j ∈ {1, . . . , s} and t ∈ Tj be arbitrary. Choosing z = z⋆ε in (4.9), it
follows that

γj
[
Jj,t(z

t
j)− Jj,t(z

⋆
ε )
]
≤ wt

jGj,t(z
⋆
ε )− γj(J

′
j,t(z

t
j), z

t+1
j − ztj)

+
αj

2

(
∥ztj − z⋆ε∥2 − ∥zt+1

j − z⋆ε∥2 − ∥zt+1
j − ztj∥2

)
− wt

j

[
Gj,t(z

t
j) + (G′

j,t(z
t
j), z

t+1
j − ztj)

]
Using (4.15) with Lj,t ≜ 1

2 (w
t+1
j )2 − 1

2 (w
t
j)

2, we arrive at

γj
[
Jj,t(z

t
j)− Jj,t(z

⋆
ε )
]
≤ wt

jGj,t(z
⋆
ε )− γj(J

′
j,t(z

t
j), z

t+1
j − ztj)− Lj,t

+
αj

2

(
∥ztj − z⋆ε∥2 − ∥zt+1

j − z⋆ε∥2 − ∥zt+1
j − ztj∥2

)
+

1

2
(M +D2R)

2.

Next, by Cauchy-Schwarz and the definition of the SO, we observe

−(J ′
j,t(z

t
j), z

t+1
j − ztj)−

αj

2γj
∥zt+1

j − ztj∥2 ≤ D1∥zt+1
j − ztj∥ −

αj

2γj
∥zt+1

j − ztj∥2

=
γjD

2
1

2αj
− αj

2γj

(
∥zt+1

j − ztj∥ −
D1γj
αj

)2

≤ γjD
2
1

2αj
.

When combined with the previous display, this yields

γj
[
Jj,t(z

t
j)− Jj,t(z

⋆
ε )
]
≤ wt

jGj,t(z
⋆
ε )− Lj,t +

γ2jD
2
1

2αj

+
αj

2

(
∥ztj − z⋆ε∥2 − ∥zt+1

j − z⋆ε∥2
)
+

1

2
(M +D2R)

2.

Aggregating these estimates for t ∈ Tj gives∑
t∈Tj

γj
[
Jj,t(z

t
j)− Jj,t(z

⋆
ε )
]
≤

∑
t∈Tj

wt
jGj,t(z

⋆
ε ) +

1

2
(w1

j )
2 − 1

2
(w

supTj+1
j )2 +∆N

γ2jD
2
1

2αj

+
αj

2

(
∥z1j − z⋆ε∥2 − ∥zsupTj+1

j − z⋆ε∥2
)
+
∆N

2
(M +D2R)

2.

Next, we sum over all epochs j ∈ {1, . . . , s} and set γj =
√
∆N , αj = ∆N .

Using the warm start condition w
supTj+1
j = w1

j+1 for j ∈ {1, . . . , s − 1}, we
obtain
N∑

k=1

[Jk(zk)− Jk(z
⋆
ε )] =

s∑
j=1

∑
t∈Tj

[
Jj,t(z

t
j)− Jj,t(z

⋆
ε )
]

≤ 1√
∆N

N∑
k=1

wkGk(z
⋆
ε ) +

1

2
√
∆N

(w1
1)

2 − 1

2
√
∆N

(wsupTs+1
s )2

+
s
√
∆N

2
(M +D2R)

2 +
D2

1s
√
∆N

2
+
R2

√
∆N

2
.
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By definition, Φ(z⋆ε ) ≤ ε, so that E[Gk(z
∗
ε )] ≤ 0. Via the law of iterated expec-

tations, this implies

E[wkGk(z
∗
ε )] = E [E[wkGk(z

⋆
ε )|Fk]] = E [wkE[Gk(z

⋆
ϵ )|Fk]]

= E [wk(Φ(z
⋆
ε )− ε)] ≤ 0.

Using this, and the fact that w1
1 = w1 = 0, we can take expectations on both

sides of the penultimate display, and finally arrive at

E

[
N∑

k=1

(Jk(zk)− Jk(z
⋆
ε ))

]
≤ s

√
∆N

2
(M +D2R)

2 +
D2

1s
√
∆N

2
+
R2

√
∆N

2
.

(4.27)

This readily implies

E[j(z̄N )− j(z⋆ε )] ≤
s
√
∆N

2N
(M +D2R)

2 +
D2

1s
√
∆N

2N
+
R2

√
∆N

2N
.

Since s = ⌈ N
∆N

⌉, it follows s
√
∆N

N = O(1/
√
∆N ). Hence, for ∆N = ⌊Na⌋ for

a ∈ (0, 1], we get the bound

E[j(z̄N )− j(z⋆ε )] ≤
s
√
∆N

2N

[
(M +D2R)

2 +D2
1 +

R2

s

]
≤ O(N−a/2).

■

Remark 7 Stochastic approximation algorithms often allow mean convergence
statements for the (ergodic) trajectory in the presence of strong convexity.
However, due to the fact that our problem formulation includes a stochastic
approximation of the functional bound constraint, it is rather difficult, if not
impossible, to extend the standard arguments. If it could be guaranteed that
Φ(z⋆ε ) < ε, then a convergence rate for the trajectory can be readily derived
using the fact that j is smooth and strongly convex.

5 Implementation and Numerical Experiments

In this section we test the OSA Algorithm 2 on a strongly convex problem
arising from the optimal control of a linear elliptic PDE with uncertain coeffi-
cients. Our test problem is motivated by the example in [21] and has the form

min
z∈L2(D)

α

2
E

[∫
D

([uξ(z)](x)− w(x))2 dx

]
+

1

2

∫
D

z(x)2 dx (5.1a)

subject to − 10 ≤ z ≤ 10 a.e., uξ(z) ≥ ψ a.e./a.s., (5.1b)
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where u = uξ(z) ∈ H1(D) is a weak solution to

−∇ · (κ(x, ξ)∇u(x)) + v(x, ξ) · ∇u(x) = f(x, ξ) + z(x) for x ∈ D (5.1c)
κ(x, ξ)∇u(x) · n = 0 for x ∈ Γn (5.1d)

u(x) = 0 for x ∈ Γd (5.1e)

Here, D ≜ (0, 1)2, α = 104, w(x) ≜ (x− 0.5)⊤(x− 0.5),

ψ(x) ≜

{ 1
4 if ∥x− ( 12 ,

1
2 )

⊤∥2 ≤ 1
4

0 otherwise
,

Γd ≜ {0} × (0, 1), Γn ≜ ∂D \ Γd,

κ(x, ξ) ≜ 0.5 + c exp(β(x, ξ)), v(x, ξ) =

(
b(ξ)− a(ξ)x1

a(ξ)x2

)
,

and f is the sum of five Gaussian sources whose locations, widths and magni-
tudes are random. The explicit form for β is described in [21, §4] (where it is
denoted by δ). The random inputs ξ are uniformly distributed on [−1, 1]37. For
our results, we replace the state constraint in (5.1a) with the smooth penalty
constraint as in (Pε) with φ as in Example 1. We chose the state constraint
penalty parameters to be ε = 10−2 and δ = 10−2.

Since an exact solution is unknown, we solved the problem using sample-
average approximation (SAA) for the expectations. We employ the augmented
Lagrangian (AL) algorithm described in [7] to solve the resulting deterministic
problem. At each AL iteration, we solve the bound-constrained subproblem
using the projected trust-region Newton method described in [24]. Our im-
plementation of this algorithm is available in the Rapid Optimization Library
[31]. Since the AL algorithm uses second-order information for the subproblem
solves, it is reasonable to assume that it makes more progress each iteration
than the OSA algorithm, with more computational effort. We treat the result-
ing solution as the “true” solution and empirically study the performance of
the OSA algorithm. In contrast to the OSA algorithm, for which we have a full
convergence proof in Hilbert space, the SAA approach would require, amongst
other things, a (statistical) consistency result to be fully justified. For this we
would need to investigate the asymptotic behavior of the random set-valued
mappings

Υε(PN ) := {z ∈ Zad |EPN
[F (θ(z, ξ))] ≤ ε} ,

which goes beyond the scope of this paper.
We discretized (5.1c) using continuous piecewise linear finite elements on a

uniform 64×64 quadrilateral mesh. To obtain our reference solution, we applied
the aforementioned SAA approach with 103 samples. We stopped AL when
the optimality and feasibility criteria were smaller than 10−8, which required
7 iterations (12 subproblem iterations). The final values for the optimality and
feasibility criteria were 5.33×10−9 and 2.84×10−11, respectively. For reference,
AL required 20 function and gradient evaluations as well as 145 applications
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of the Hessian to a vector, resulting in a total of 495,000 deterministic PDE
solves. Since Algorithm 2 requires 3 deterministic PDE solves per iteration, the
cost of AL is comparable to running Algorithm 2 with N = 165, 000. We also
solved (5.1a) using Algorithm 2 with N ∈ {103, 104, 105} iterations and epoch
lengths ∆N = N and ∆N = 500. We ran each of these cases five times. This
provided us with five controls per configuration of N and ∆N for comparison
in the statistical tests detailed below.

Figure 2 depicts the empirical distribution of the objective function for
each of these runs using 104 samples, which were chosen to be different than
the samples used for SAA and Algorithm 2. The five runs with 103 (red),
104 (blue) and 105 (green) iterations produced similar distributions for their
respective settings. Therefore, for a given value N , there is significant overlap
of the distributions; Figure 2. Although the SAA solution (black) generally
produced smaller objective function values, the OSA distributions appear to
be converging to that of the SAA solution. This is especially apparent for
N = 105 and ∆N = 500.

∆N = N

J(zN , ξ)

∆N = 500

J(z̄N , ξ)

Fig. 2: Objective function empirical distribution using 104 samples for the SAA optimal
control (black) and the OSA controls computed with 103 (red), 104 (blue), and 105 (green)
iterations for epoch lenghts ∆N = N (left) and ∆N = 500 (right).

Section 4.4 provides the mean convergence statements for feasibility (Propo-
sition 4) and the optimal values (Theorem 1). However, since we generate our
solutions via simulations, i.e., sample paths of a rather complicated stochastic
process, we believe it is also of interest to conduct a further statistical test to
judge the reliability of a single reported solution. This kind of post-optimality
test is rarely included in the literature. Our goal is to compare the quality of
solutions via hypothesis testing of the empirical distribution functions for the
objective J and penalty function F out of sample.

We performed a two-sample Kolmogorov-Smirnov (KS) test using the em-
pirical distributions (cdfs) generated by m = 104 samples of the objective and
penalty functions for two computed controls z1 and z2 either from SAA or
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from OSA with fixed N . The KS statistics are defined by

DJ(z1, z2) := sup
t∈R

|F̂J(z1,ξ)(t)− F̂J(z2,ξ)(t)|

DF (z1, z2) := sup
t∈R

|F̂F (θ(z2,ξ))(t)− F̂F (θ(z1,ξ))(t)|,

where F̂J(z,ξ)(·) is the empirical cdf for the objective and F̂F (θ(z,ξ))(·) is the
empirical cdf for the penalty. We recall that the KS test is nonparametric
and makes no assumptions about the form of the true distributions. It merely
reports the maximum difference between the two cdfs. The null hypothesis for
the KS test is that the random variables J(z1, ξ) and J(z2, ξ) are sampled
from populations with identical distributions. Typically the null hypothesis
will be rejected if the KS statistic is larger than a certain critical threshold,
which depends on the number of the samples used to generate the empirical
cdfs.

For our problem set up, the null hypothesis is rejected at level α if

DJ(z1, z2) >

√
−0.5 ln(α

2 )√
N

and similarly for DF (z1, z2). Typical values for α range from 0.2 to 0.001, but
there are technically no restrictions.

We list the computed KS statistics in Table 1. The upper triangle of each
table corresponds to the objective function and the lower triangle corresponds
to the penalty. The first column compares the penalty distribution for the
SAA control and the OSA controls computed using 103, 104, and 105 itera-
tions. Similarly, the first row compares the objective distribution for the SAA
control and the OSA controls. The (i, j)-entry for j > i lists the KS statistic
for the objective functions computed using the ith and jth controls. The (i, j)-
entry for j < i lists the KS statistic for the corresponding penalty functions.
As Figure 2 already suggests, the OSA and SAA solutions generate random
variables that generally appear to be from different distributions. This obser-
vation is confirmed by the KS test. A simple computation shows that the null
hypothesis is rejected for the objective function in all cases with the largest
α being α ≈ 10−20 (i.e., N = 105 and ∆N = 500). However, the OSA ob-
jective function distributions do appear to converge to the SAA distribution
as N increases (cf., Figure 2). In contrast, the null hypothesis is accepted
for the objective function distributions for the different OSA controls z⋆N,i for
i = 1, . . . , 5 for any α below a minimum level of α = 0.17, which provides con-
fidence that the OSA controls, computed using the same N and ∆N , generate
objective function values that are drawn from the same distribution.

6 Conclusion and Outlook

PDE-constrained optimization is an important class of infinite-dimensional
optimization problems. Motivated by applications in engineering and physics,
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N ∆N = N ∆N = 500
0 1.0000 1.0000 1.0000 1.0000 1.0000 0 1.0000 1.0000 1.0000 1.0000 1.0000

103

1.0000 0 0.0127 0.0121 0.0098 0.0130 1.0000 0 0.0108 0.0109 0.0095 0.0120
1.0000 0.0153 0 0.0109 0.0093 0.0097 1.0000 0.0141 0 0.0116 0.0074 0.0104
1.0000 0.0100 0.0148 0 0.0111 0.0145 1.0000 0.0093 0.0156 0 0.0131 0.0145
1.0000 0.0123 0.0086 0.0129 0 0.0080 1.0000 0.0108 0.0072 0.0137 0 0.0068
1.0000 0.0121 0.0105 0.0145 0.0069 0 1.0000 0.0117 0.0097 0.0160 0.0070 0

0 0.9986 0.9980 0.9983 0.9982 0.9986 0 0.4250 0.4270 0.4192 0.4301 0.4318

104

0.8090 0 0.0114 0.0114 0.0101 0.0152 0.1219 0 0.0108 0.0104 0.0093 0.0150
0.8132 0.0173 0 0.0103 0.0059 0.0115 0.1271 0.0065 0 0.0110 0.0060 0.0106
0.8078 0.0096 0.0182 0 0.0130 0.0157 0.1284 0.0096 0.0079 0 0.0130 0.0149
0.8148 0.0140 0.0092 0.0151 0 0.0089 0.1241 0.0056 0.0040 0.0077 0 0.0086
0.8246 0.0171 0.0116 0.0205 0.0104 0 0.1276 0.0073 0.0052 0.0060 0.0038 0

0 0.5665 0.5691 0.5658 0.5706 0.5778 0 0.0609 0.0655 0.0629 0.0635 0.0672

105

0.2055 0 0.0104 0.0105 0.0094 0.0143 0.0032 0 0.0115 0.0102 0.0110 0.0160
0.2094 0.0067 0 0.0107 0.0065 0.0110 0.0028 0.0008 0 0.0107 0.0053 0.0131
0.2111 0.0091 0.0078 0 0.0136 0.0152 0.0042 0.0021 0.0017 0 0.0130 0.0156
0.2156 0.0106 0.0070 0.0082 0 0.0086 0.0025 0.0013 0.0009 0.0020 0 0.0116
0.2142 0.0125 0.0069 0.0060 0.0053 0 0.0024 0.0012 0.0008 0.0023 0.0007 0

Table 1: Kolmogorov-Smirnov (KS) statistic of the objective, DJ , and penalty functions,
DF , quantifying the discrepancy between the empirical distributions for the controls com-
puted by SAA and OSA. Smaller values indicate that the two sets of samples come from
the same distribution. The upper triangle of each table corresponds to the objective and the
lower corresponds to the penalty. The first column compares the penalty distribution for the
SAA optimal control and the OSA controls computed using 103, 104, and 105 iterations.
Similarly, the first row compares the objective distribution for the SAA optimal control and
the OSA controls. The (i, j)-entry for j > i lists the KS statistic for the objective functions
computed using the ith and jth controls. The (i, j)-entry for j < i lists the KS statistic for
the corresponding penalty functions.

we considered a class of convex stochastic optimization problems in which the
solution of the PDE needs to satisfy a pointwise constraint in an a.s. sense. We
proposed a penalty-based relaxation approach that transforms this challenging
problem into a numerically tractable form. We then developed a tailor-made
online stochastic approximation scheme to effectively solve the resulting convex
optimization problem.

We provide a full convergence analysis in infinite-dimensional Hilbert space.
Assuming that we employ a conforming spatial discretization, there is sufficient
stability near the fully continuous solution, and the numerical bias can be con-
trolled as a function of N , then the convergence statements should carry over
to discretization refinements of the fully discrete problem. A deeper analysis
of this, as in [13, 27], will be the subject of future research.
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